

NASA Cost Symposium August 12, 2014

Presented by:

Andy Prince – NASA MSFC

and

Richard Webb – KT Engineering

Engineering Cost Office

OUTLINE

- CAST What it is
 - Relationship to NAFCOM
 - Relationship to Project Cost Estimating Capability (PCEC)
- Development Approach
 - Overall goals Philosophical framework
 - What we are estimating
 - Work and Functional Breakdown Structures (WBS & FBS)
 - How we are estimating
 - Basis of estimate historical database
 - Cost Estimating Relationship (CER) development
- End Product
 - Model and data
 - Depth and breadth

CAST – What It Is

What it is

 New, unique cost model for use in estimating space transportation systems, including crewed systems, and earth-to-orbit and in-space transportation systems.

Relationship to NAFCOM

- CAST includes, but offers a more tailored estimating capability than NAFCOM
- NAFCOM CER historical database is point-of-departure for many of the CAST CERs
 - CAST CERs draw on NAFCOM experience, but are not necessarily the same
 - Researching/updating/documenting NAFCOM historical database to be sure we understand it
 - As applicable, segregating out spacecraft datapoints
 - Adding additional datapoints as appropriate
 - Other changes/enhancements
- NAFCOM 12 CERs will remain accessible as-is through PCEC

Relationship to Project Cost Estimating Capability (PCEC)

- CAST will be part of/accessible through PCEC
- Model and data/documentation (through ONCE and REDSTAR)

Development Approach

- Overall goals Philosophical framework
 - Definition of a model: Mathematical relationships based on known historical data for use in estimating the cost of future systems
 - Focus: The data and arithmetic; Not the "bits and bytes"
 - We are feeding math and data to PCEC developers for incorporation in the overall PCEC
 - Emphasis: Basis of Estimate = Traceability and transparency of estimate to database
 - Development and documentation of the database and analytical processes behind the CERs incorporated in the model
 - Provides flexibility to use CAST data/model as point-of-departure for tailored/customized estimates

What We Are Estimating – WBS/FBS

- What do we want to model? Primary Assumptions/Considerations
 - There will be a set of CERs or equivalent estimating capability available to PCEC users for each WBS line item
 - The WBS/CERs should be set up to utilize/reflect as much historical source data as possible
 - The WBS/CERs should be set up to provide users with as much useful information as possible to cover a wide range of potential uses
 - Results in need to consider multiple dimensions
- Breakdown Structure Dimensions:
- End Items (Products & Services) = WBS
 - Point of Departure = NAFCOM (Launch Vehicle and Crew Vehicle Templates), MIL HDBK 881,
 Others
 - Will feed NPR 1720 (1.8) and CADRE; but estimates will be done at lower levels
 - Initially hardware only, but add launch and flight ops (and NREC facilities) to provide full LCC estimating capability
- 2. Time = Non Recurring and Recurring CERs for each WBS element

What We Are Estimating – WBS/FBS

- Breakdown Structure Dimensions (continued):
- 3. Functions (Engineering, Touch, Mfg Support, QA, etc.) = Functional Breakdown Structure (FBS)
 - A lot of the historical data is in this format, not by end item
 - Many (most?) cost reduction/affordability approaches relate most directly to functions, not end items
 - E.g. Touch labor vs. automated welding; SR&QA vs. reduction in Gov't Mandated Inspection Points (GMIPS); Facility O&M vs. shared facilities
 - Separate from, but equal to WBS CER results: \sum WBS elements = \sum FBS elements
 - CAST includes estimating relationships between WBS and FBS elements ratio analysis
- 4. Elements of Cost = Labor hours, Labor \$'s, Overhead \$'s, ODC's, Materials, Subcontracts
 - Included (explicitly or implicitly) in WBS and FBS results
 - Primary inputs on (for instance) 533 data
- Wraps
 - Review/define terms
 - Contractor, Non-Prime Support, Civil Service
 - Program Management & Support, SE&I, S&MA, Vehicle Integration, etc.
 - Cost-to-cost non-linear CER's (not just a %)
 - Based on historical data: R&PM, Cx, SLS, etc.
 - Non-Recurring vs. Recurring; Program Approach (e.g. Cx vs. SLS vs. Shuttle)

What We Are Estimating – WBS/FBS

Current CAST WBS

L 2 3 STEM	1 2 3 SYSTEM	1 2 3 SYSTEM
Program Segment	Vehicle Segment (continued)	Ground Segment
Program Mgt & Support	Propulsion	Production Faciilties
Systems Engr & Integ	Liquid Engines	Facility
Safety & Mission Assur	Solid Motors	Tooling
Vehicle Segment	Reaction Control Sys	Launch Facilities
Integration, Ass'y, Checkout	Orbit Maneuvering	Pad
Structures	Avionics & Power	Vertical Processing
Wing	Guidance, Nav, & Control	Horizontal Processing
Tail	Communication & Tracking	Launch Control
Fuselage/Body	Data Processing	Payload Processing
Thrust Structure	Instrumentation	Mobile Launch Platform
Adapters	Telemetry	Landing
Holddown Structures	Thermal Control	Infrastructure
Secondary/Support Structs	Elec Power Generation	Test Facilities
Tanks	Elec Pwr Distribution & Control	Integrated Vehicle
Fuel	Flight Termination System	Propulsion
Oxidizer	Shroud/Fairing	Structures
Intertank	Structures	Operations Segment
Thermal Protect	Payload Accomodations	Launch Operations
Mechanisms	Utilties	Flight Operations
Flight Controls	Separation	
Separation	Crew Systems	
Recovery	Environ Ctl & Life Support	
Umbilicals	Crew Accomodations	
Main Propulsion Systems	Displays & Controls	
Feed	Software Segment	
Fill & Drain	Flight Software	
Purge & Vent	Ground Software	
Pressurization	Test Segment	
Thermal Protection	Ground Test Operations	
Passive	Special Test Equipment	
Active	Flight Test Operations	

MIPSS

Crewed and Space Transportation Systems Cost Model

What We Are Estimating – WBS/FBS

- FBS Examples: Program & Propulsion Segments
- Works with WBS as two-dimensional matrix
 - Not every matrix "box" is relevant/has data

T Engineering

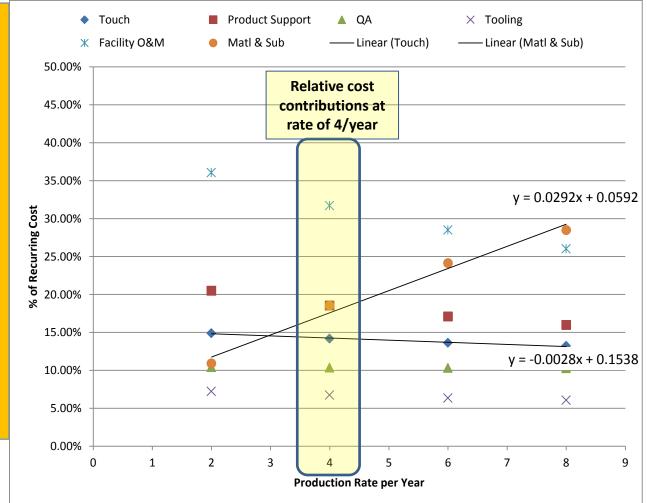
FBS Elements

Nature of input/source data dictates which direction calculation goes **Engineering** 1 2 3 **Program Mgt & Support** Design & Special PM&S **Bus Ops Logistics Supt Svcs** ODC Sys Integ Sys Analy Analy Sustain Studies LAUNCH SYSTEM **Program Segment** Х Program Mgt & Support Χ NREC REC Systems Engr & Integ Χ Safety & Mission Assur **Vehicle Segment** Propulsion **Liquid Engines** Χ **NREC** Χ Χ Χ REC Χ Х Х Х Χ **NREC** REC Χ Soli Some overlap with WBS line items and elements of cost **MATERIAL & SUBCONTRACT** 3 Manufacturing Flight Hardware **Support Hardware** Facility Flight **Flight** Flight Support Support Support Touch Mfg Supt SR&QA 0&M Hdw 1 Hdw 2 Hdw N Hdw 1 Hdw 2 Hdw N **LAUNCH SYSTEM Program Segment** Program Mgt & Support Systems Engr & Integ FBS elements can vary Safety & Mission Assur by WBS line item **Vehicle Segment** Propulsion Χ Χ **Pumps Liquid Engines** Χ Nozzle Controller Χ Χ Solid Motors Χ Χ Case Propellant Nozzle **Reaction Control Sys Orbit Maneuvering**

What We Are Estimating – WBS/FBS

FBS CER Application Example

Question:


 At production rate of 4 per year, what is savings if introduce automated welding equipment for propellant tank manufacturing?

Assume

- WBS Tank CER output = \$10M/tank
- Estimated savings = 60% reduction in touch labor

Application

- Touch Labor % of Total \$ = -.0028 x (rate) + .1538
- Touch Labor % @ 4/year = -.0028 (4) + .1538 = 14.3%
- 14.3% x (\$10M x 4) = \$5.7M touch labor cost per year
- \$5.7M x 60% = \$3.4M/year savings
- \$3.4M / \$.150M/MYE = 22 EP reduction in touch labor headcount

How We Are Estimating

Basis of estimate – historical database

- Evaluate the existing historical database: relevance, validity, content, assumptions
 - E.g. Centaur G' (i.e. Shuttle Centaur) 80's, derivative and incomplete, CISS included?, allocations?
- Add new historical datapoints
 - Pretty sparse, mostly mods, many not completed:
 - Shuttle upgrades: Super Lightweight ET, ASRM, MEDS (glass cockpit)
 - New programs: ARES, Orion, J2X
 - Limited knowledge: RS68, EELV
 - Publicly available: supplemental (?), anecdotal vs. verifiable

Cost Estimating Relationship (CER) development

- Scarcity and age/applicability of data relative to utilization methods in CER development
- The choice, measurement, and quantification of qualitative and/or binary independent variables
 - Dummy variables vs. "complexity" factors
 - Manned/unmanned, upper stage/booster, expendable/reusable, etc.
 - Program Approach ("Platform"), Funding Certainty, Insight/Oversight (Wraps)
 - Relative to a baseline system vs. "pure" judgment documentation
- Sanity checks

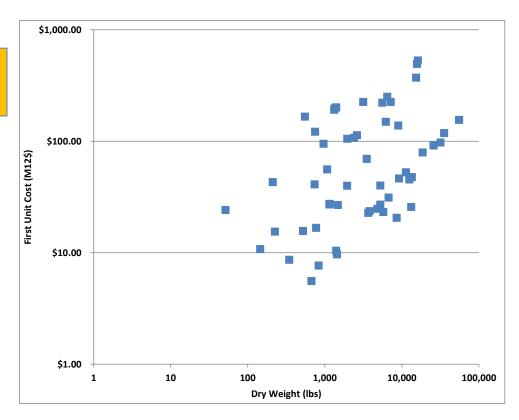
Best-fit regression results must make sense

• A• E.g. negative slope for New Design variable dd fixed/variable cost estimating capability: learning and rate curves

How We Are Estimating

CER/Database Issues

- Scarcity and age/applicability of data relative to utilization methods in CER development
- Example: Structures & Mechanisms
- 54 datapoints
- 15 subsystem/component CERs
- 5 one-point "CERs"


• 11 (10	Vehicle Systems
	TO	Vernere Systems

Initial

Latest "initial launch year" = 1986

	Subsystem	# Points
1	Mech Actuators	1
2	MechSeparation	2
3	Leading Edge	1
4	Interface Hardware	1
5	General	17
6	Mech Payload Bay Doors	1
7	Wing	4
8	Skirt	4
9	Base Heat Shield	2
10	Mech Hydraulics	1
11	Tank	10
12	Intertank	2
13	Thrust Structure	4
14	Re-Entry Heat Shield	2
15	Interstage	2

	Vehicle	Launch Year
1	Apollo CSM	1968
2	Apollo LM	1968
3	Centaur-D	1966
4	Centaur-G'	1986
5	External Tank	1981
6	Gemini	1965
7	Shuttle Orbiter	1981
8	S-IC	1968
9	S-II	1968
10	S-IVB	1968
11	Spacelab	1983

CAST: End Product

- Model and data: Traceability and transparency
 - CAST will provide the end item estimating capability currently available in NAFCOM
 - CAST will add:
 - Functional estimates
 - Fixed/variable production & operations estimates
 - Other expanded capabilities
 - Updated/expanded documentation of CER analyses and historical database
- Estimating capability: Depth and breadth
 - Both WBS and FBS dimensions
 - Time dimension Full life cycle cost estimating capability: "sand charts"
 - Spread vs. non-spread cost
 - Cost as function of flight/production rates over time
 - (Eventually) Nonrecurring facilities, mission and launch ops

